Introduction
The following is an example of implementing the ecmFit
procedure for estimating error correction models.
Load data
This example loads the data using the GAUSS function csvReadM
. The function csvReadM
utilizes the GAUSS formula string syntax while allows users to load and transform specific variables directly from the dataset.
new;
library tsmt;
// Get file name with full path
fname = getGAUSSHome() $+ "pkgs/tsmt/examples/ecmmt.csv";
// Load all rows (from 1 to the end) of columns 2 and 3
y = csvReadM(fname, 1, 2);
// Difference the data
y = vmdiffmt(y, 1);
Estimate The Model
// Estimate model with AR order set to 1
call ecmFit(y, 1);
Output
The output reads:
========================================================================== ECM Version 3.0.0
========================================================================== Residual Covariance Matrix 8003.3 7241.5 7241.5 8097.1 Zeta Plane [1,.,.] 0.26261 0.00000 0.00000 0.26558 Pi 1.3944 0.00000 0.00000 1.3673 Augmented Dickey-Fuller UNIT ROOT Test for Y1 Critical Values ADF Stat 1% 5% 10% 90% 95% 99% No Intercept -18.6669 -2.6065 -1.9639 -1.6348 0.8909 1.2930 1.9716 Intercept -18.6410 -3.4269 -2.8628 -2.5722 -0.4634 -0.0922 0.6131 Intercept and Time Trend -18.6184 -3.9930 -3.4200 -3.1352 -1.2386 -0.9299 -0.3372 Augmented Dickey-Fuller UNIT ROOT Test for Y2 Critical Values ADF Stat 1% 5% 10% 90% 95% 99% No Intercept -18.8509 -2.6065 -1.9639 -1.6348 0.8909 1.2930 1.9716 Intercept -18.8246 -3.4269 -2.8628 -2.5722 -0.4634 -0.0922 0.6131 Intercept and Time Trend -18.8006 -3.9930 -3.4200 -3.1352 -1.2386 -0.9299 -0.3372 Phillips-Perron UNIT ROOT Test for Y1 PPt 1% 5% No Intercept -38.1615 -2.6065 -1.9639 Intercept -49.4585 -3.4269 -2.8628 Intercept and Time Trend -49.4051 -3.9930 -3.4200 Phillips-Perron UNIT ROOT Test for Y2 PPt 1% 5% No Intercept -36.1496 -2.6065 -1.9639 Intercept -47.6308 -3.4269 -2.8628 Intercept and Time Trend -47.5694 -3.9930 -3.4200 Augmented Dickey-Fuller COINTEGRATION Test for Y1 Y2 Critical Values ADF Stat 1% 5% 10% 90% 95% 99% No Intercept -17.5257 -3.3620 -2.7755 -2.4614 -0.2868 0.1329 1.0347 Intercept -17.5257 -3.9024 -3.3271 -3.0372 -0.9965 -0.6055 0.1185 Intercept and Time Trend -17.5264 -4.3298 -3.8116 -3.5188 -1.5945 -1.2902 -0.5767 Johansen's Trace and Maximum Eigenvalue Statistics. r = # of CI Equations Critical Values r Trace Max. Eig 1% 5% 10% 90% No Intercept 0 635.4352 335.6915 1 299.7437 299.7437 1.0524 1.7046 2.1927 9.3918 Intercept 0 635.4463 335.7033 1 299.7430 299.7430 2.2515 3.3599 4.0975 12.8635 Intercept and Time Trend 0 635.4759 335.7050 1 299.7709 299.7709 4.0389 5.3796 6.1879 16.1762 Dep. Variable(s) : D(Y1 ) D(Y2 ) No. of Observations : 366 366 Degrees of Freedom : 355 355 Mean of Y : -0.0040 -0.0020 Std. Dev. of Y : 5.6821 5.6408 Y Sum of Squares : 11784.4965 11613.7893 SSE : 8003.2952 8097.1416 MSE : 22.2005 22.4609 sqrt(MSE) : 4.7117 4.7393 R-Squared : 0.3209 0.3028 Adjusted R-Squared : 0.3017 0.2832 Model Selection (Information) Criteria ...................................... Likelihood Function : -3662.5588 Akaike AIC : 7303.1176 Schwarz BIC : 7390.0466 Likelihood Ratio : 7325.1176 Characteristic Equation(s) for Stationarity and Invertibility AR Roots and Moduli: Real : -1.3 -1.3 Imag.: 1.5 -1.5 Mod. : 2.0 2.0 MULTIVARIATE ACF LAG01 LAG02 LAG03 -0.06832 -0.05948 -0.1725 -0.139 -0.2508 -0.2182 -0.06776 -0.07195 -0.1549 -0.1576 -0.2526 -0.2456 LAG04 LAG05 LAG06 0.02011 0.008796 0.01458 0.0204 -0.07357 -0.04992 0.05702 0.0323 -0.02637 -0.04106 -0.0441 -0.03693 LAG07 LAG08 LAG09 -0.04169 -0.0379 -0.01503 -0.05778 0.07288 0.05431 -0.06037 -0.03542 -0.0007025 -0.03612 0.04379 0.0148 LAG10 LAG11 LAG12 -0.003824 0.02044 0.08261 0.05255 -0.05834 -0.03262 0.03214 0.05593 0.09985 0.08299 -0.1043 -0.07912 ACF INDICATORS: SIGNIFICANCE = 0.95 (using Bartlett's large sample standard errors) LAG01 LAG02 LAG03 LAG04 LAG05 LAG06
-+-+ -+-+ -+-+ -+-+ -+-+ -+-+
-+-+ -+-+ -+-+ -+-+ -+-+ -+-+
LAG07 LAG08 LAG09 LAG10 LAG11 LAG12
-+-+ -+-+ -+-+ -+-+ -+-+ -+-+
-+-+ -+-+ -+-+ -+-+ -+-+ -+-+
Multivariate Goodness of Fit Test Lag Qs P-Value 2 25.7435 0.0000 3 56.8257 0.0000 4 61.2333 0.0000 5 70.2656 0.0000 6 75.1898 0.0000 7 80.6586 0.0000 8 85.1005 0.0000 9 90.4321 0.0000 10 94.3758 0.0000 11 100.8592 0.0000 12 108.3529 0.0000