Introduction
The following is an example of implementing the arimaSS
procedure for state space estimation of ARIMA models. It considers an ARIMA(1,1,1) model of the U.S wholesale price index (WPI) between 1960q1
and 1990q4 and follows the model of Enders (2004).
Load data
This example loads the data using the GAUSS function loadd
.
new;
library tsmt;
// Create file name with full path
fname = getGAUSSHome() $+ "pkgs/tsmt/examples/wpi1.dat";
// Load variable 'wpi' from dataset
y = loadd(fname, "wpi");
Estimate The Model
The GAUSS function arimaSS
uses Kalman Filtering and State Space modeling to estimate the ARIMA(1,1,1) model.
// ARIMA model settings
p = 1;
d = 1;
q = 1;
trend = 0;
const = 1;
// Perform estimation and print report
call arimaSS(y, p, d, q, trend, const);
Output
The output reads:
Number of Observations: 123.0000 Degrees of Freedom: 119 Mean of Y: 62.7742 Standard Deviation of Y: 30.2436 Sum of Squares of Y: 112504.7755 COEFFICIENTS Coefficient Estimates Variables Coefficient se tstat pval phi : y[t-1] 0.868*** 0.0639 13.6 4.66e-42 theta : e[t-1] -0.406*** 0.123 -3.3 0.000983 Sigma2 0.524*** 0.0462 11.3 7.69e-30 Constant 0.8** 0.296 2.71 0.0068 *p-val<0.1 **p-val<0.05 ***p-val<0.001
Dep. Variable(s) : Y1 No. of Observations : 123 Degrees of Freedom : 119 Mean of Y : 0.6951 Std. Dev. of Y : 0.9800 Y Sum of Squares : 117.1570 SSE : 68.4063 MSE : 17.1016 sqrt(MSE) : 4.1354 Model Selection (Information) Criteria ...................................... Likelihood Function : -135.4639 Akaike AIC : 262.9278 Schwarz BIC : 290.1765 Likelihood Ratio : 270.9278