Good day,
I have tried to replicate Table 8 of the paper "Dynamic panels with threshold effect and endogeneity" by Seo and Shin (2016) Journal of Econometrics Volume 195, Issue 2, December 2016, Pages 169-186.
I obtained the results below but could not match them with those reported in the paper. I am particularly interested in the estimates reported in Table 8 of their paper.
Any help, please? I do have the code and the data if that helps.
Thanks,
ozey
x = c~Tq~d; @ set regressors (c=cash flow, Tq=Tobin, d=debt)@
/------ output based on analytic variance formula -----/
proportion of upper regime: 0.1958
estimates and s.e. (threshold~lower regime (lag y,x)~delta (1,lag y,x)
0.3590 0.3875 0.0519 -0.0038 -0.1350 0.4409 -0.0594 -0.0039 0.6580
0.0396 0.0919 0.0387 0.0023 0.0466 0.2601 0.0521 0.0019 0.1322
upper regime estimates and s.e. (lag y,x)
0.8284 -0.0075 -0.0077 0.5229
0.2291 0.0457 0.0033 0.1311
Long-run parameter estimates and s.e.
0.0519 -0.0038 -0.1350 -0.0075 -0.0077 0.5229
0.0696 0.0033 0.1239 1.3404 0.2641 2.3207
Overidentification J-statistic (p-value)
45.0039 0.0162
/------ in case of averaging -----/
proportion of upper regime: 0.1940
estimates and s.e. (threshold~lower regime (lag y,x)~delta (1,lag y,x)
0.3601 0.3941 0.0592 -0.0034 -0.1215 0.4091 -0.0770 -0.0035 0.6133
0.0426 0.0869 0.0416 0.0021 0.0441 0.2417 0.0491 0.0018 0.1224
upper regime estimates and s.e. (lag y,x)
0.8032 -0.0179 -0.0069 0.4918
0.2127 0.0440 0.0032 0.1234
Long-run parameter estimates and s.e.
0.0592 -0.0034 -0.1215 -0.0179 -0.0069 0.4918
0.0721 0.0031 0.1118 1.0912 0.2213 1.5592
Overidentification J-statistic (p-value)
64.0851 0.0001
elapsed time : 15 minutes 56.92 seconds
2 Answers
0
There will be some variation in the output of the code because it uses random numbers in the computations. I ran the code in GAUSS 18 on a Mac and GAUSS 10 on a Linux server and got slightly different results each time.
Then I made two changes which gave me reproducible results.
First change
I set the random number seed, using the rndseed
keyword towards the top of the code, like this
new; format /rd /m1 8,4; output file= invest.out on;
tstart = date;
load invest; // Load data and define variables
// Set seed for repeatable random numbers
rndseed 23423;
Second change
When running the code with GAUSS 18, I changed the function rndn
to _rndng10
so that GAUSS 10 and GAUSS 18 would use the same random number generator. (Note that GAUSS 18 uses a higher quality random number generator than GAUSS 10 and _rndng10
should be used only for comparing results between versions.)
With these changes, I get this output
no constant threshold variable = c qn~ns~jm~jn~t0 : 200.0000 200.0000 1.0000 1.0000 4.0000 number of moments: 36.0000 linearity test from analytic : 0.0000 linearity test from averaging: 0.0000 /------ output based on analytic variance formula -----/ proportion of upper regime: 0.1958 estimates and s.e. (threshold~lower regime (lag y,x)~delta (1,lag y,x) 0.3590 0.3875 0.0519 -0.0038 -0.1350 0.4409 -0.0594 -0.0039 0.6580 0.0396 0.0919 0.0387 0.0023 0.0466 0.2601 0.0521 0.0019 0.1322 upper regime estimates and s.e. (lag y,x) 0.8284 -0.0075 -0.0077 0.5229 0.2291 0.0457 0.0033 0.1311 Long-run parameter estimates and s.e. 0.0519 -0.0038 -0.1350 -0.0075 -0.0077 0.5229 0.0696 0.0033 0.1239 1.3404 0.2641 2.3207 Overidentification J-statistic (p-value) 45.0039 0.0162 /------ in case of averaging -----/ proportion of upper regime: 0.1928 estimates and s.e. (threshold~lower regime (lag y,x)~delta (1,lag y,x) 0.3610 0.3862 0.0570 -0.0035 -0.1214 0.4407 -0.0773 -0.0032 0.6044 0.0420 0.0870 0.0407 0.0022 0.0434 0.2432 0.0494 0.0017 0.1207 upper regime estimates and s.e. (lag y,x) 0.8269 -0.0203 -0.0067 0.4830 0.2148 0.0439 0.0031 0.1214 Long-run parameter estimates and s.e. 0.0570 -0.0035 -0.1214 -0.0203 -0.0067 0.4830 0.0701 0.0032 0.1079 1.2555 0.2512 1.9488 Overidentification J-statistic (p-value) 62.2397 0.0001 elapsed time : 11 minutes 27.62 seconds
Based on this, it appears that to reproduce the results of the paper exactly, you would need to use the same starting random seed.
0
Hi,
Have also computed similar results but don't know how to interpret them.
Any help please?
davide
Your Answer
2 Answers
There will be some variation in the output of the code because it uses random numbers in the computations. I ran the code in GAUSS 18 on a Mac and GAUSS 10 on a Linux server and got slightly different results each time.
Then I made two changes which gave me reproducible results.
First change
I set the random number seed, using the rndseed
keyword towards the top of the code, like this
new; format /rd /m1 8,4; output file= invest.out on;
tstart = date;
load invest; // Load data and define variables
// Set seed for repeatable random numbers
rndseed 23423;
Second change
When running the code with GAUSS 18, I changed the function rndn
to _rndng10
so that GAUSS 10 and GAUSS 18 would use the same random number generator. (Note that GAUSS 18 uses a higher quality random number generator than GAUSS 10 and _rndng10
should be used only for comparing results between versions.)
With these changes, I get this output
no constant threshold variable = c qn~ns~jm~jn~t0 : 200.0000 200.0000 1.0000 1.0000 4.0000 number of moments: 36.0000 linearity test from analytic : 0.0000 linearity test from averaging: 0.0000 /------ output based on analytic variance formula -----/ proportion of upper regime: 0.1958 estimates and s.e. (threshold~lower regime (lag y,x)~delta (1,lag y,x) 0.3590 0.3875 0.0519 -0.0038 -0.1350 0.4409 -0.0594 -0.0039 0.6580 0.0396 0.0919 0.0387 0.0023 0.0466 0.2601 0.0521 0.0019 0.1322 upper regime estimates and s.e. (lag y,x) 0.8284 -0.0075 -0.0077 0.5229 0.2291 0.0457 0.0033 0.1311 Long-run parameter estimates and s.e. 0.0519 -0.0038 -0.1350 -0.0075 -0.0077 0.5229 0.0696 0.0033 0.1239 1.3404 0.2641 2.3207 Overidentification J-statistic (p-value) 45.0039 0.0162 /------ in case of averaging -----/ proportion of upper regime: 0.1928 estimates and s.e. (threshold~lower regime (lag y,x)~delta (1,lag y,x) 0.3610 0.3862 0.0570 -0.0035 -0.1214 0.4407 -0.0773 -0.0032 0.6044 0.0420 0.0870 0.0407 0.0022 0.0434 0.2432 0.0494 0.0017 0.1207 upper regime estimates and s.e. (lag y,x) 0.8269 -0.0203 -0.0067 0.4830 0.2148 0.0439 0.0031 0.1214 Long-run parameter estimates and s.e. 0.0570 -0.0035 -0.1214 -0.0203 -0.0067 0.4830 0.0701 0.0032 0.1079 1.2555 0.2512 1.9488 Overidentification J-statistic (p-value) 62.2397 0.0001 elapsed time : 11 minutes 27.62 seconds
Based on this, it appears that to reproduce the results of the paper exactly, you would need to use the same starting random seed.
Hi,
Have also computed similar results but don't know how to interpret them.
Any help please?
davide