Author: Eric

The Basics of Quantile Regression

Classical linear regression estimates the mean response of the dependent variable dependent on the independent variables. There are many cases, such as skewed data, multimodal data, or data with outliers, when the behavior at the conditional mean fails to fully capture the patterns in the data. In these cases, quantile regression provides a useful alternative to linear regression. Today we explore quantile regression and use the GAUSS quantileFit procedure to analyze Major League Baseball Salary data.

Top five hotkeys to get more done in GAUSS

The GAUSS interface includes a number of often overlooked hotkeys and shortcuts. These features can help make programming more efficient and navigation seamless. In this blog I highlight my top five GAUSS hotkeys:
  1. Quickly view data symbols using Ctrl+E.
  2. Open floating command reference pages using Shift+F1.
  3. Toggle block comments on and off using Ctrl+/.
  4. Go to procedure definitions using Ctrl+F1.
  5. Delete lines using Ctrl+L.
Tagged in ,

A Simple Test for Structural Breaks in Variance

Though many standard econometric models assume that variance is constant, structural breaks in variance are well-documented, particularly in economic and finance data. If these changes are not accurately accounted for, they can hinder forecast inference measures, such as forecast variances and intervals. In this blog, we consider a tool that can be used to help locate structural breaks in variance — the iterative cumulative sum of squares algorithm(ICSS) (Inclan and Tiao, 1994).
Tagged in , ,

Reading dates and times in GAUSS

Time series data with inconsistently formatted dates and times can make your work frustrating. Dates and times are often stored as strings or text data and converting to a consistent, numeric format might seem like a daunting task. Fortunately, GAUSS includes an easy tool for loading and converting dates and times – the `date` keyword.

The Effects of Structural Breaks on GMM models

While structural breaks are a widely examined topic in pure time series, their impacts on panel data models have garnished less attention. However, in their forthcoming paper Chowdhury and Russell (2018)] demonstrate that structural breaks can cause bias in the instrumental variable panel estimation framework. This work highlights that structural breaks shouldn’t be limited to pure time series models and warrant equal attention in panel data models.
Tagged in

Have a Specific Question?

Get a real answer from a real person

Need Support?

Get help from our friendly experts.