Download and install packages in one step
- Get working faster with quicker access to pre-built GAUSS packages.
- Download, install and update GAUSS packages without ever leaving GAUSS.
- Supports paid GAUSS Application Modules and new free GAUSS packages!
- Download from Aptech channels or create and share private packages across your organization.
Questions? Get an answer from our experts or request a quote!
Improved panel data functionality
New function to aggregate results across groups by:
- mean, min, max, median, mode, variance, sum and standard deviation.
Example aggregate by year
// Load data with the grouping data in the first column
X = loadd("grunfeld.dat", "Years + Investment");
// Group investment by average for year
mean_by_year = aggregate(X, "mean");
Example aggregate by firm
// Load data with the grouping data in the first column
X = loadd("grunfeld.dat", "firm + Investment");
// Group investment by median for each firm
median_by_firm = aggregate(X, "median");
Advanced imputation methods for missing values
- New support for predictive mean matching, local residual draws, and linear prediction imputation.
- Customizable with options for the number of donors, matching type, and linear prediction methods.
Optional Arguments: Add power and flexibility to your procedures
New suite of tools makes it easy to add optional arguments to your GAUSS procedures.
- Easily integrate default values.
- Retrieve single or multiple optional inputs in a single line.
- Tools to count the number of optional inputs and check input types.
Example estimation procedure with optional lambda
This example shows a simple estimation procedure that chooses either OLS estimation or ridge regression based on whether an optional input, lambda, is passed in.
// ... is a placeholder for the optional arguments
proc (1) = estimate(y, X, ...);
local lambda;
// Get the optional 'dynamic argument'
lambda = getDynargs(1);
// If the 'lambda' was not passed in,
// it will be an empty matrix.
if isempty(lambda);
// No 'lambda' so perform standard OLS
b_hat = olsRegress(y, X);
else;
// 'lambda' passed in so perform ridge regression
b_hat = ridgeRegress(y, X, lambda);
endif;
retp(b_hat);
endp;
The procedure above can be called like this:
// OLS regression when optional input is not passed in
b_hat = estimate(y, X);
or like this:
// Ridge regression is performed when optional input is passed in
b_hat = estimate(y, X, lambda);
Expanded graphics tools
New filled area plots using plotXYFill
.
New horizontal bar plots using plotBarH
.
Other new graphics functionality
plotSetLegend
now supports setting the legend location by coordinates.- Precise control over y-axis tick location and intervals using
plotSetYTicInterval
. - Alpha channel support provides optional transparency for any graph element.
- Better control over bar plot adds.
- Control for legend border properties.
Other new functions
- modec - Compute mode for each matrix column.
- loaddsa - Load string data from CSV, Excel, GAUSS, SAS or STATA datasets.
- sprintf - Create formatted string output from columns of matrices and strings.
var_names = "alpha" $| "beta" $| "gamma"; b = { 0.34, 1.9334, -0.8983 }; se = { 0.00002234, 0.013235, 0.03752 };
↓
print sprintf(fmt, var_names, b, se);
↓
alpha 0.340 (0.00) beta 1.933 (0.01) gamma -0.898 (0.04)
- weighted ols - Compute weighted OLS estimates with user-specified weights.