More Research, Less Effort with GAUSS 25!

Introduction

GAUSS 25 will transform your workflow with intuitive tools for data exploration, advanced diagnostics, and seamless model comparison.

Comprehensive Panel Data Tools

Panel data in GAUSS.

Struggling to make sense of panel data? GAUSS 25 transforms the way you load, analyze, and explore your data, giving you the intuitive tools you need.

Explore Panel Data Characteristics

  • Explore overall, within-group, and between group summary statistics with pdSummary.
// Import data
pd_cty = loadd("pd_county.gdat");

/* 
** Create panel data summary report.
** pdSummary will automatically detect 
** group variable and time variable
*/
call pdSummary(pd_cty);
======================================================================================
Group ID:                     county          Balanced:                            Yes
Valid cases:                      28          Missings:                              0
N. Groups:                         4          T. Average:                        7.000
======================================================================================
Variable           Measure           Mean      Std. Dev.        Minimum        Maximum
--------------------------------------------------------------------------------------
emp                Overall         30.201         25.514          2.936         73.689
                   Between              .         28.888          4.367         71.362
                    Within              .          1.376         26.728         32.528
wage               Overall         17.313          4.273         12.302         28.908
                   Between              .          4.394         13.576         23.630
                    Within              .          1.802         14.377         22.591
======================================================================================
// Print report on size and range
// of each individual in the panel.
call pdSize(pd_cty);
============================================================
Group ID:           county         Balanced:             Yes
Valid cases:           28          Missings:               0
N. Groups:              4          T. Average:         7.000
============================================================
county                    T[i]     Start Date       End Date
------------------------------------------------------------

Cook                         7     1977-01-01     1983-01-01
Harris                       7     1977-01-01     1983-01-01
Los Angeles                  7     1977-01-01     1983-01-01
Maricopa                     7     1977-01-01     1983-01-01
============================================================

Prepare Panel Data for Modeling

  • Automated and intelligent detection of group and time variables for seamless workflows.
  • Sort panel data instantly with detected group and time variables using pdSort.
  • New pdLag and pdDiff for calculating panel data lags and differences.
// Compute second lag of each
// individual in the panel
pd_cty_l = pdLag(pd_cty, 2);

// Print the first 10 observations
print pd_cty_l[1:10,.];
     county             year              emp             wage
Los Angeles       1977-01-01                .                .
Los Angeles       1978-01-01                .                .
Los Angeles       1979-01-01        5.0409999        13.151600
Los Angeles       1980-01-01        5.5999999        12.301800
Los Angeles       1981-01-01        5.0149999        12.839500
Los Angeles       1982-01-01        4.7150002        13.803900
Los Angeles       1983-01-01        4.0929999        14.289700
       Cook       1977-01-01                .                .
       Cook       1978-01-01                .                .
       Cook       1979-01-01        71.319000        14.790900

New Hypothesis Testing

The new waldTest procedure provides a powerful and intuitive tool for testing linear hypotheses after estimation.

  • Perform post-estimation hypothesis testing after OLS, GLM, GMM, and Quantile Regression.
  • Specify hypotheses effortlessly using variable names.
  • Comprehensive support for linear combination of variables in hypotheses.
// Run ols model
struct olsmtout cen_ols;
cen_ols = olsmt("census3.dta", "brate ~ medage + medage*medage + region");

// Test the hypothesis that the coefficients on 
// the Ncentral region and South region are equal
{ wald_stat, p_value } = waldTest(cen_ols, "region: NCentral - region: South");
======================================
Wald test of null joint hypothesis:
region: NCentral - region: South =  0
-------------------------------------
F( 1, 44 ):                    5.0642
Prob > F :                     0.0295
=====================================

Check for the equivalency of slopes across quantiles after Quantile Regression with the new qfitSlopeTest.

// Set up tau for regression
tau = 0.35|0.55|0.85;

// Call quantileFit
struct qfitOut qOut;
qOut = quantileFit("regsmpl.dta", "ln_wage ~ age + age:age + tenure", tau);

// Test for joint equivalency of all slopes
// across all quantiles 
qfitSlopeTest(qOut);
===================================
Joint Test of Equality in Slopes :
 tau in { 0.35 , 0.55 , 0.85 }
Model: ln_wage ~
age + age_age + tenure
-----------------------------------
F( 9, 28097 ):             138.2428
Prob > F :                   0.0000
===================================



Ready to elevate your research? Try GAUSS 25 today.

Enhanced Result Printouts

GAUSS 25 now offers expanded model diagnostics and consistent printouts across all estimation procedures.

//Get file name with full path
file = getGAUSShome("examples/clotting_time.dat");

//Perform estimation and print report
call glm(file, "lot1 ~  ln(plasma)", "gamma");
Generalized Linear Model
===================================================================
Valid cases:               9           Dependent variable:     lot1
Degrees of freedom:        7           Distribution           gamma
Deviance:             0.0167           Link function:       inverse
Pearson Chi-square:   0.0171           AIC:                  37.990
Log likelihood:          -16           BIC:                  38.582
Dispersion:                0           Iterations:               38
Number of vars:            2
===================================================================
                                   Standard                    Prob
Variable               Estimate       Error     t-value        >|t|
-------------------------------------------------------------------

CONSTANT              -0.016554  0.00092754     -17.848   4.279e-07
ln(plasma)             0.015343  0.00041496      36.975  2.7511e-09
===================================================================

These enhancements make it easier than ever to compare models, explore results, and gain deeper insights with confidence.

Improved Performance and Speed-ups

  • Expanded two-way tabulation using tabulate to find row or column percentages.
  • The gmmFitIV function now uses metadata from dataframes to identify and report variable names and supports the "by" keyword.
  • Optional specification of sorted data provides speed improvements when using counts.
  • The plotFreq procedure now supports the "by" keyword for counting frequencies across groups.
// Load dataset
tips2 = loadd("tips2.csv");

// Create a frequency plot of visits per day
// for each category of smoker (Yes, or No).
plotFreq(tips2, "day + by(smoker)");
Frequency plot in GAUSS.
  • saved now automatically detects and saves categorical and string variables using their labels for Excel files.

Conclusion

For a complete list of all GAUSS 25 offers please see the complete changelog.


Discover how you can get more done with GAUSS 25.

 
Leave a Reply