There is no getting around the fact that data wrangling, cleaning, and exploring plays an important role in any empirical research. Data management can be time-consuming, error-prone, and can make or break results.
GAUSS 22 is built to take the pain out of dealing with your data and to let you move seamlessly towards tackling your important research questions.
In today’s blog, we walk through how to efficiently prepare and explore real-world data before modeling or estimation. We’ll look at:
- Loading and merging data.
- Cleaning data to eliminate misentries, missing values, and more.
- Exploring data.