Aptech Store

GAUSS sarimaSS example

Introduction

The following is an example of implementing the sarimaSS procedure for state space estimation of SARIMA models. This example reproduces the Box and Jenkins (1976) Series G dataset to estimate the SARIMA(0,1,1)(0,1,1) "airline model".

Step 1: Load data

This example loads the data using the GAUSS function loadd.

new;
library tsmt;
// Create file name with full path
dataset = getGAUSSHome() $+ "pkgs/tsmt/examples/airline.dat";
// Load and transform data
y = loadd(dataset, "ln(airline)");

Step 2: Estimate the model

The GAUSS function sarimaSS uses Kalman Filtering and State Space modelling to estimate the SARIMA(0,1,1)(0,1,1) model.

p = 0;
d = 1;
q = 1;
P_s = 0;
D_s = 1;
Q_s = 1;
s = 12;
trend = 0;
const = 0;
// Estimate model
call sarimaSS(y, p, d, q, P_s, D_s, Q_s, s, trend, const);

Step 3: Output

The output reads

SARIMA(0,1,1)(0,1,1) Results

Number of Observations:                 131.0000
Degrees of Freedom:                          127
Mean of Y:                                5.5422
Standard Deviation of Y :                 0.4415
Sum of Squares of Y:                     27.8684

                           COEFFICIENTS

Coefficient Estimates
------------------------------------------------------------------------------------------

       Variables      Coefficient               se            tstat             pval
  theta : e[t-1]           -0.407                1           -0.407            0.684
  theta : e[t-1]           -0.551                1           -0.551            0.582
          Sigma2           0.0014                1           0.0014            0.999
------------------------------------------------------------------------------------------
*p-val<0.1 **p-val<0.05 ***p-val<0.001
Dep. Variable(s) : Y1 No. of Observations : 131 Degrees of Freedom : 127 Mean of Y : 0.0003 Std. Dev. of Y : 0.0458 Y Sum of Squares : 0.2733 SSE : 0.1835 MSE : 0.0459 sqrt(MSE) : 0.2142 Model Selection (Information) Criteria ...................................... Likelihood Function : 244.5181 Akaike AIC : -497.0362 Schwarz BIC : -469.5354 Likelihood Ratio : -489.0362

Have a Specific Question?

Get a real answer from a real person

Need Support?

Get help from our friendly experts.