Binary Logit Example
This example demonstrates the use of a binary logit model. It models grade (
A) achievement rates in a Economics course in relationship to cumulative grade point average (
GPA), literacy test score (
TUCE), and optional participation in a special economics course (
PSI).
The first step to setting up all Discrete Choice models is to declare and initialize the
dcControl structure:
struct dcControl dcCt;
dcCt = dcControlCreate();
Next, load and setup the model data using the
dcSet procedures:
loadm y = aldnel_mat;
dcSetYVar(&dcCt,y[.,5]);
dcsetYLabel(&dcCt,"A");
dcSetXVars(&dcCt,y[.,2:4]);
dcsetXLabels(&dcCt,"GPA,TUCE,PSI");
Following data setup, declare the
dcOut structure:
struct dcout dcout1;
Finally, call the
binaryLogit procedure:
dcout1 = binaryLogit(dcCt);
call printDCOut(dcOut1);
The example prints the model and data description to screen:
Binary Logit Results
2015-05-14 14:56:37
Number of Observations: 32
Degrees of Freedom: 28
1 - Y0
2 - Y1
Distribution Among Outcome Categories For A
Dependent Variable Proportion
Y0 0.6563
Y1 0.3438
Descriptive Statistics (N=32):
Independent Vars. Mean Std Dev Minimum Maximum
GPA 3.1172 0.4521 2.0600 4.0000
TUCE 21.9375 3.7796 12.0000 29.0000
PSI 0.4375 0.4883 0.0000 1.0000
All coefficients, odds ratios, and marginal effects are printed:
COEFFICIENTS
Coefficient Estimates
--------------------------------------------------------------------------------
Variables Coefficient se tstat pval
Constant: Y0 -13** 4.93 -2.64 0.00828
GPA 2.83** 1.26 2.24 0.0252
TUCE 0.0952 0.142 0.672 0.501
PSI 2.38** 1.06 2.23 0.0255
--------------------------------------------------------------------------------
*p-val<0.1 **p-val<0.05 ***p-val<0.001
ODDS RATIO
Odds Ratio
----------------------------------------------------------------------------
Variables Odds Ratio 95% Lower Bound 95% Upper Bound
GPA 16.88 1.4201 200.63
TUCE 1.0998 0.83336 1.4515
PSI 10.791 1.3393 86.941
----------------------------------------------------------------------------
MARGINAL EFFECTS
Partial probability with respect to mean x
Marginal Effects for X Variables in Y1 category
---------------------------------------------------------------------------
Variables Coefficient se tstat pval
GPA 0.534** ( 0.237) 2.25 0.0321
TUCE 0.018 ( 0.0262) 0.685 0.499
PSI 0.449** ( 0.197) 2.28 0.0299
---------------------------------------------------------------------------
Estimate se in parantheses.
*p-val<0.1 **p-val<0.05 ***p-val<0.001
In addition a number of summary statistics for model diagnostics are printed:
********************SUMMARY STATISTICS********************
MEASURES OF FIT:
-2 Ln(Lu): 25.7793
-2 Ln(Lr): All coeffs equal zero 44.3614
-2 Ln(Lr): J-1 intercepts 41.1835
LR Chi-Square (coeffs equal zero): 18.5822
d.f. 4.0000
p-value = 0.0000
LR Chi-Square (J-1 intercepts): 15.4042
d.f. 3.0000
p-value = 0.0015
Count R2, Percent Correctly Predicted: 26.0000
Adjusted Percent Correctly Predicted: 0.4545
Madalla's pseudo R-square: 0.3821
McFadden's pseudo R-square: 0.3740
Ben-Akiva and Lerman's Adjusted R-square: 0.2283
Cragg and Uhler's pseudo R-square: 0.2358
Akaike Information Criterion: 1.0556
Bayesian Information Criterion1: 0.1832
Hannan-Quinn Information Criterion: 1.1163
OBSERVED AND PREDICTED OUTCOMES
| Predicted
Observed | Y01 Y02 Total
-------------------------------------------------
Y01 | 18 3 21
Y02 | 3 8 11
-------------------------------------------------
Total | 21 11 32