Goals
This tutorial introduces the use of the optional input, tau
, to specify quantile levels for the quantileFit
procedure.
The tau input
The quantileFit
procedure accepts the optional input, tau
, as the third input:
quantileFit(dataset, formula, tau)
or
quantileFit(y, x, tau)
GAUSS accepts a single quantile level or a vector of quantile levels with values $0 \lt τ \lt 1$. By default, GAUSS estimates the regression for the 5%, 50%, and 95%. If you want estimates for these quantile levels you do not need to use the tau
input. However, if you wish to change these quantile levels, you will need to specify custom tau
levels.
Basic example
Consider the example from our previous tutorial where we estimated:
$$ln(wage) = \alpha + \beta_1 * age + \beta_2 * age^2 + \beta_3 * tenure .$$
Specifying a single quantile level
First, let's estimate the model for the 35% quantile level:
// Create string with full path to dataset
dataset = getGAUSSHome() $+ "examples/regsmpl.dta";
// Specify quantile level
tau = 0.35;
// Estimate the model with matrix inputs
call quantileFit(dataset, "ln_wage ~ age + age:age + tenure", tau);
This produces the following results :
Total observations: 28101
Number of variables: 3
VAR. / tau (in %) 35%
------------------------------- CONSTANT 0.6846 age 0.0471 age:age -0.0008 tenure 0.0471
Comparing multiple quantile level
Now, let's compare estimates of the model for the 35%, 50%, and 85% quantile levels:
// Create string with full path to dataset
dataset = getGAUSSHome() $+ "examples/regsmpl.dta";
// Specify quantile level
tau = 0.35|0.55|0.85;
// Estimate the model with matrix inputs
call quantileFit(dataset, "ln_wage ~ age + age:age + tenure", tau);
This produces the following output:
Total observations: 28101
Number of variables: 3
VAR. / tau (in %) 35% 55% 85%
--------------------------------------------------- CONSTANT 0.6846 0.4234 0.1441 age 0.0471 0.0739 0.1081 age:age -0.0008 -0.0011 -0.0014 tenure 0.0471 0.0457 0.0285
The output tables now contains three columns, one for each quantile level estimated.
Conclusion
This tutorial showed you how to specify the quantile levels to be estimated when using quantileFit
. You should now know how to:
- Specify a single quantile levels for use with
quantileFit
- Specify multiple quantile levels for use with
quantileFit
In the next tutorial we will learn how perform weighted analysis using the quantileFit
procedure.